EASiTool: An Enhanced Analytical Simulation Tool for Storage Capacity Estimation

UREAU OF

CONOMIC

1. Introduction

In this study, an enhanced simulation tool was developed that can be used by CO_2 sequestration stakeholders in their decision-making process to increase their confidence in investing the geological CO_2 storage. The analytical simulation tool 1. provides a science based estimate of storage capacity by applying novel analytical

- models for both closed- and open boundary aquifers,
- 2. analyze the possibility of enhancing storage efficiency by integrating brine management (brine-extraction technology),
- 3. incorporate rock geomechanics as a limiting factor in injectivity calculations, and

4. address uncertainties associated with input model parameters. The EASiTool can be used to provide reservoir-scale storage-capacity estimates that are based on novel methodologies to calculate pressure buildup in geological formations.

2. Analytical Solution of Two-Phase Flow

2.1 Assumption

- Fully penetrating vertical well
- Homogeneous
- Isotropic
- Horizontal
- Cylindrical
- Constant rate
- μ_i and c_i are constant

2.2 CO₂ Injection in Saline Aquifers

- Infinite acting and closed boundary conditions
- Two-phase relative permeability
- CO₂ dissolution into brine
- Formation of drying-out zone around the injector

$$P_{wD} = P_{wD}^{S} + \sum_{i=1}^{N_{w}-1} q_{Di} \left[-\frac{1}{2} \frac{\overline{\lambda_{g}}}{\overline{\lambda_{w}}} E_{i} \left(-\frac{r_{Di}^{2}}{4\eta_{D3}t_{D}} \right) + \frac{1}{2} \frac{\overline{\lambda_{g}}}{\overline{\lambda_{w}}} E_{i} \left(-\frac{r_{eD}^{2}}{4\eta_{D3}t_{D}} \right) + 2 \frac{\overline{\lambda_{g}}}{\overline{\lambda_{w}}} \frac{\eta_{D3}t_{D}}{r_{eD}^{2}} exp \left(-\frac{r_{eD}^{2}}{4\eta_{D3}t_{D}} \right) \right]$$
$$P_{wD}^{S} = \frac{1}{2} (ln(t_{D}) + 0.80908) + S_{a} + \frac{1}{2} \frac{\overline{\lambda_{g}}}{\overline{\lambda_{w}}} E_{i} \left(-\frac{r_{eD}^{2}}{4\eta_{D3}t_{D}} \right) + 2 \frac{\overline{\lambda_{g}}}{\overline{\lambda_{w}}} \frac{\eta_{D3}t_{D}}{r_{eD}^{2}} exp \left(-\frac{r_{eD}^{2}}{4\eta_{D3}t_{D}} \right)$$

2.3 Brine Extraction

• Open boundary

 $P_{wDExt}(t_{DExt}) = \frac{1}{2}(ln(t_D) + 0.80908)$

Closed boundary

 $P_{wDExt}(t_{DExt}) = \frac{2t_{DExt}}{r_{eDExt}^2} + \ln(r_{eDExt}) - \frac{3}{4}$

Reza Ganjdanesh and Seyyed A. Hosseini Bureau of Economic Geology, The University of Texas at Austin

* Corresponding Author: reza.ganjdanesh@beg.utexas.edu

 $\overline{\overline{A}}.\overline{Q}=\overline{B}$

4. Optimal Injection/Extraction Rates

4.1 Simulation results for 16 injectors and 4 extractors

The initial pressure is 20.25 MPa and the target bottomhole pressure of injectors and extractors are 25.25 and 20.25 MPa. The predicted bottomhole pressures after 20 years using same injection and extraction rates by numerical simulations are 25.14 and 20.24 MPa.

Initial pressure, kPa	20,250
Initial temperature, °C	65
Thickness, m	100
Salinity, kg/mol	0
Porosity	0.2
Permeability, mD	100
Rock compressibility, 1/Pa	5.0E-10
Reservoir area, km ²	100
Basin area, km ²	100
Boundary Condition	Closed

1. Analytical model is a reliable tool for preliminary capacity estimation of saline aquifers. 2. Addition of brine/CO₂ phase behavior, two-phase relative permeability model, and near well-bore effects, such as brine evaporation, salt precipitation, and rock geomechanics, allows better injectivity estimates.

Acknowledgments: Funding provided by DOE award DE-FE-0009301 and GCCC.

3. Analytical Simulation

3.1 calculation of CO₂ injection and brine production rates

Fracture pressure for *m* injectors and minimum bottomhole pressure for *n* extractors:

5. Effect of Brine Extraction 10 CO2 Plume Extension Extractors lock Comp. 0 Number of Injection Wells 10 X , km CO2 Plume Extension Extractors Rock Comp. Number of Injection Wells X, km Extractors nperature ck Comp. Krg0 Number of Injection Well X, km Extracto ່ວ 120 ck Comp. 9 Number of Injection Wells

X, km

6. Conclusions

3. Brine extraction enhances the storage capacity and controls the pressure buildup.

